35,680 research outputs found

    Revisiting two strong approximation results of Dudley and Philipp

    Full text link
    We demonstrate the strength of a coupling derived from a Gaussian approximation of Zaitsev (1987a) by revisiting two strong approximation results for the empirical process of Dudley and Philipp (1983), and using the coupling to derive extended and refined versions of them.Comment: Published at http://dx.doi.org/10.1214/074921706000000824 in the IMS Lecture Notes Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Weighted estimates for solutions of the ∂\partial -equation for lineally convex domains of finite type and applications to weighted bergman projections

    Full text link
    In this paper we obtain sharp weighted estimates for solutions of the ∂\partial-equation in a lineally convex domains of finite type. Precisely we obtain estimates in spaces of the form L p ({\Omega},δ\delta γ\gamma), δ\delta being the distance to the boundary, with gain on the index p and the exponent γ\gamma. These estimates allow us to extend the L p ({\Omega},δ\delta γ\gamma) and lipschitz regularity results for weighted Bergman projection obtained in [CDM14b] for convex domains to more general weights

    A version of the Glimm method based on generalized Riemann problems

    Get PDF
    We introduce a generalization of Glimm's random choice method, which provides us with an approximation of entropy solutions to quasilinear hyperbolic system of balance laws. The flux-function and the source term of the equations may depend on the unknown as well as on the time and space variables. The method is based on local approximate solutions of the generalized Riemann problem, which form building blocks in our scheme and allow us to take into account naturally the effects of the flux and source terms. To establish the nonlinear stability of these approximations, we investigate nonlinear interactions between generalized wave patterns. This analysis leads us to a global existence result for quasilinear hyperbolic systems with source-term, and applies, for instance, to the compressible Euler equations in general geometries and to hyperbolic systems posed on a Lorentzian manifold.Comment: 34 page

    Spin-orbit coupling and chaotic rotation for coorbital bodies in quasi-circular orbits

    Full text link
    Coorbital bodies are observed around the Sun sharing their orbits with the planets, but also in some pairs of satellites around Saturn. The existence of coorbital planets around other stars has also been proposed. For close-in planets and satellites, the rotation slowly evolves due to dissipative tidal effects until some kind of equilibrium is reached. When the orbits are nearly circular, the rotation period is believed to always end synchronous with the orbital period. Here we demonstrate that for coorbital bodies in quasi-circular orbits, stable non-synchronous rotation is possible for a wide range of mass ratios and body shapes. We show the existence of an entirely new family of spin-orbit resonances at the frequencies n±kν/2n\pm k\nu/2, where nn is the orbital mean motion, ν\nu the orbital libration frequency, and kk an integer. In addition, when the natural rotational libration frequency due to the axial asymmetry, σ\sigma, has the same magnitude as ν\nu, the rotation becomes chaotic. Saturn coorbital satellites are synchronous since ν≪σ\nu\ll\sigma, but coorbital exoplanets may present non-synchronous or chaotic rotation. Our results prove that the spin dynamics of a body cannot be dissociated from its orbital environment. We further anticipate that a similar mechanism may affect the rotation of bodies in any mean-motion resonance.Comment: 6 pages. Astrophysical Journal (2013) 6p

    Effective material parameter retrieval for thin sheets: theory and application to graphene, thin silver films, and single-layer metamaterials

    Full text link
    An important tool in the field of metamaterials is the extraction of effective material parameters from simulated or measured scattering parameters of a sample. Here we discuss a retrieval method for thin-film structures that can be approximated by a two-dimensional scattering sheet. We determine the effective sheet conductivity from the scattering parameters and we point out the importance of the magnetic sheet current to avoid an overdetermined inversion problem. Subsequently, we present two applications of the sheet retrieval method. First, we determine the effective sheet conductivity of thin silver films and we compare the resulting conductivities with the sheet conductivity of graphene. Second, we apply the method to a cut-wire metamaterial with an electric dipole resonance. The method is valid for thin-film structures such as two-dimensional metamaterials and frequency-selective surfaces and can be easily generalized for anisotropic or chiral media.Comment: 5 pages, 5 figure

    Nano-structures at martensite macrotwin interfaces in Ni65Al35Ni_{65}Al_{35}

    Get PDF
    The atomic configurations at macrotwin interfaces between microtwinned martensite plates in Ni65Al35Ni_{65}Al_{35} material are investigated using transmission electron microscopy. The observed structures are interpreted in view of possible formation mechanisms for these interfaces. A distinction is made between cases in which the microtwins, originating from mutually perpendicular \{110\} austenite planes, enclose a final angle larger or smaller than 90∘90^{\circ}. Two different configurations, a crossing and a step type are described. Depending on the actual case, tapering, bending and tip splitting of the smaller microtwin variants are observed. The most reproducible deformations occur in a region of approximately 5-10nm width around the interface while a variety of structural defects are observed further away from the interface. These structures and deformations are interpreted in terms of the coalescence of two separately nucleated microtwinned martensite plates and the need to accommodate remaining stresses

    Time integration and steady-state continuation for 2d lubrication equations

    Full text link
    Lubrication equations allow to describe many structurin processes of thin liquid films. We develop and apply numerical tools suitable for their analysis employing a dynamical systems approach. In particular, we present a time integration algorithm based on exponential propagation and an algorithm for steady-state continuation. In both algorithms a Cayley transform is employed to overcome numerical problems resulting from scale separation in space and time. An adaptive time-step allows to study the dynamics close to hetero- or homoclinic connections. The developed framework is employed on the one hand to analyse different phases of the dewetting of a liquid film on a horizontal homogeneous substrate. On the other hand, we consider the depinning of drops pinned by a wettability defect. Time-stepping and path-following are used in both cases to analyse steady-state solutions and their bifurcations as well as dynamic processes on short and long time-scales. Both examples are treated for two- and three-dimensional physical settings and prove that the developed algorithms are reliable and efficient for 1d and 2d lubrication equations, respectively.Comment: 33 pages, 16 figure

    Electronic and thermoelectric properties of Fe2VAl: The role of defects and disorder

    Full text link
    Using first-principles calculations, we show that Fe2VAl is an indirect band gap semiconductor. Our calculations reveal that its, sometimes assigned, semimetallic character is not an intrinsic property but originates from the antisite defects and site disorder, which introduce localized ingap and resonant states changing the electronic properties close to band gap. These states negatively affect the thermopower S and power factor PF=S^2\sigma, decreasing the good thermoelectric performance of intrinsic Fe2VAl.Comment: 4 pages, 6 figures, thermoelectric properties, electronic structure and transport properties, effect of antisite defects and disorder on electronic and transport propertie
    • …
    corecore